Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Nutr Food Res ; 68(2): e2300567, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38059795

RESUMO

SCOPE: Branched-chain amino acids, especially leucine, have been reported to play a role in regulating lipid metabolism. This study aims to examine the effects of leucine deprivation on hepatic lipid metabolism. METHODS AND RESULTS: C57BL/6 mice are fed with a chow diet (control group, n = 8) or a leucine-free diet (-Leu group, n = 8) for 7 days. Histology, lipidomics, targeted metabolomics, and transcriptomics are performed to analyze the liver tissue. Compared to control group, -Leu group exhibits a notably reduced liver weight, accompanied by hepatic injury, and disorders of lipid metabolism. The level of sphingomyelin (SM) is significantly increased in the liver of -Leu group, while the glycerolipids (GL) level is significantly decreased. The expression of sphingomyelin synthase 1 (SGMS1) is upregulated by leucine deprivation in a time-dependent manner, leading to hepatic SM accumulation. Moreover, leucine deprivation results in hepatic GL loss via suppressing fatty acid synthase (FASN) and acetyl-CoA carboxylase 1 (ACC1) expression. CONCLUSION: The findings demonstrate that leucine deprivation results in abnormal lipid metabolism in the liver, mainly manifested as SM accumulation and GL loss. These results provide insights into the role of leucine in regulating lipid metabolism.


Assuntos
Metabolismo dos Lipídeos , Esfingomielinas , Camundongos , Animais , Leucina/metabolismo , Leucina/farmacologia , Esfingomielinas/farmacologia , Multiômica , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Dieta Hiperlipídica
2.
Angew Chem Int Ed Engl ; 62(35): e202308017, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37409886

RESUMO

Aqueous zinc-ion batteries are inherently safe, but the severe dendrite growth and corrosion reaction on zinc anodes greatly hinder their practical applications. Most of the strategies for zinc anode modification refer to the research of lithium metal anodes on surface regulation without considering the intrinsic mechanisms of zinc anode. Herein, we first point out that surface modification cannot permanently protect zinc anodes due to the unavoidable surface damage during the stripping process by solid-liquid conversion. A bulk-phase reconstruction strategy is proposed to introduce abundant zincophilic sites both on the surface and inside the commercial zinc foils. The bulk-phase reconstructed zinc foil anodes exhibit uniform surfaces with high zincophilicity even after deep stripping, significantly improving the resistance to dendrite growth and side reactions. Our proposed strategy suggests a promising direction for the development of dendrite-free metal anodes for practical rechargeable batteries with high sustainability.

3.
Sci Bull (Beijing) ; 68(14): 1531-1539, 2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37385901

RESUMO

The development of electrolytes with a wide temperature range, no dendrite growth and corrosion resistance is essential for the practical application of aqueous zinc metal batteries. Herein, γ-valerolactone is developed as the co-solvent to extend the operating temperature range of the aqueous electrolyte and stabilize the zinc metal anode interface. This weak solvent acts as a strong hydrogen bonding ligand and "diluent" to break the hydrogen bonds between free water molecules, thus enhancing the temperature tolerance and chemical stability of the electrolyte. The γ-valerolactone can also be adsorbed on the anode surface to achieve a dendrite-free zinc deposition behavior by promoting zinc nucleation and regulating zinc growth texture. The optimized electrolyte enables the symmetric cell to deliver a cycle/rest life of 2160 h and operate stably over a wide temperature range of -50 to 80 °C. The corresponding Zn||AC and Zn||PANI cells exhibit capacity retention of 92.5% and 85% after 8100 and 1600 cycles, respectively. This mechanism of weak solvent-regulated hydrogen bonding and solvent sheath provides new insights into the design of advanced aqueous electrolytes.

4.
Int J Antimicrob Agents ; 62(3): 106907, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37385564

RESUMO

Salmonella enterica is a food-borne pathogen that poses a severe threat to both poultry production and human health. Antibiotics are critical for the initial treatment of bacterial infections. However, the overuse and misuse of antibiotics results in the rapid evolution of antibiotic-resistant bacteria, and the discovery and development of new antibiotics are declining. Therefore, understanding antibiotic resistance mechanisms and developing novel control measures are essential. In the present study, GC-MS-based metabolomics analysis was performed to determine the metabolic profile of gentamicin sensitive (SE-S) and resistant (SE-R) S. enterica. Fructose was identified as a crucial biomarker. Further analysis demonstrated a global depressed central carbon metabolism and energy metabolism in SE-R. The decrease in the pyruvate cycle reduces the production of NADH and ATP, causing a decrease in membrane potential, which contributes to gentamicin resistance. Exogenous fructose potentiated the effectiveness of gentamicin in killing SE-R by promoting the pyruvate cycle, NADH, ATP and membrane potential, thereby increasing gentamicin intake. Further, fructose plus gentamicin improved the survival rate of chicken infected with gentamicin-resistant Salmonella in vivo. Given that metabolite structures are conserved across species, fructose identified from bacteria could be used as a biomarker for breeding disease-resistant phenotypes in chicken. Therefore, a novel strategy is proposed for fighting against antibiotic-resistant S. enterica, including exploring molecules suppressed by antibiotics and providing a new approach to find pathogen targets for disease resistance in chicken breeding.


Assuntos
Antibacterianos , Salmonella enteritidis , Animais , Humanos , Antibacterianos/farmacologia , Gentamicinas/farmacologia , NAD , Galinhas/microbiologia , Metabolômica , Trifosfato de Adenosina
5.
Chem Commun (Camb) ; 59(56): 8715-8718, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37350501

RESUMO

Amide additives acting as hydrogen-bonding ligands effectively break the cross-linking structures between water molecules and increase the entropy of mixed solvents, thus enabling a mixed solvent with an ultralow freezing point of -98 °C. Zinc-ion batteries using this hybrid solvent exhibit good cycling stability over a wide temperature range from -60 °C to 50 °C.

6.
Angew Chem Int Ed Engl ; 62(28): e202304259, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37161849

RESUMO

Rechargeable zinc metal batteries are promising for large-scale energy storage. However, their practical application is limited by harsh issues such as uncontrollable dendrite growth, low Coulombic efficiency, and poor temperature tolerance. Herein, a unique design strategy using γ-valerolactone-based electrolyte and nanocarbon-coated aluminum substrate was reported to solve the above problems. The electrolyte with extremely low freezing point and high thermal stability enables the symmetric cells with long cycle life over a wide temperature range (-50 °C to 80 °C) due to its ability to regulate zinc nucleation and preferential epitaxial growth. Besides, the nanocarbon-coated aluminum substrate can also promote a higher Coulombic efficiency over a wide temperature range in contrast to the low Coulombic efficiency of copper substrates with significant irreversible alloying reactions because this unique substrate with excellent chemical stabilization can homogenize the interfacial electron/ion distribution. The optimized zinc metal capacitors can operate stably under various temperature conditions (2000 cycles at 30 °C with 66 % depth of discharge and 1200 cycles at 80 °C with 50 % depth of discharge). This unique electrolyte and substrate design strategy achieves a robust zinc metal battery over a wide temperature range.

7.
Microbiol Spectr ; : e0479922, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36917000

RESUMO

Chickens have been used as a valuable and traditional model for studies on basic immunology. B lymphocytes were first identified in the bursa of Fabricius (BF) of broilers. The microbiota is important for immune system development and function. However, the effect of the microbiota on mediating B cell development and its regulatory mechanism is poorly elucidated. Here, we show that the gut microbiota is associated with the development of bursal B cells in young chickens. Changing patterns of both the alpha diversity and the expression of the B cell marker Bu-1α in the gut microbiota were related to the ages of chickens at different growth phases. Further correlation analysis revealed the marked correlation between the relative abundances of Intestinimonas, Bilophila, Parasutterella, Bacteroides, Helicobacter, Campylobacter, and Mucispirillum and the expression of Bu-1α. In antibiotic-treated chickens, BF and B cell development had aberrations as the relative abundance of the microbiota in early life decreased. These findings were consistent with Spearman's correlation results. Single-cell transcriptome analysis indicated that the heterogeneity in the cellular composition and developmental trajectory of bursal B cells from antibiotic-treated chickens was large. We found a novel subpopulation of unnamed B cells and identified Taf1 as a new pivotal regulator of B cell lineage differentiation. Therefore, we provide novel insights into the regulatory role of the gut microbiota in B cell development in early life and the maturation of host humoral immunity. IMPORTANCE In this study, we used young broilers to investigate the relationship between their gut microbiota and bursal B cell development. We characterized the important variables, microbes, B cells, and immunoglobulins during the posthatch development of birds. We also identified several candidate taxa in the cecal contents associated with B cells. Our study provides a rich resource and cell-cell cross talk model supporting B cell differentiation from the bursa in vitro at single-cell resolution. Furthermore, we determined a new pivotal regulator (Taf1) of B cell differentiation. We believe that our study makes a significant contribution to the literature because our findings may elucidate the role of the gut microbiota in B cell differentiation. This study also serves as a basis for developing new strategies that modulate B cell differentiation to prevent diseases.

8.
Angew Chem Int Ed Engl ; 62(16): e202218612, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36719397

RESUMO

Developing a highly stable and dendrite-free zinc anode is essential to the commercial application of zinc metal batteries. However, the understanding of zinc dendrites formation mechanism is still insufficient. Herein, for the first time, we discover that the interfacial heterogeneous deposition induced by lattice defects and epitaxial growth limited by residual stress are intrinsic and critical causes for zinc dendrite formation. Therefore, an annealing reconstruction strategy was proposed to eliminate lattice defects and stresses in zinc crystals, which achieve dense epitaxial electrodeposition of zinc anode. The as-prepared annealed zinc anodes exhibit dendrite-free morphology and enhanced electrochemical cycling stability. This work first proves that lattice defects and residual stresses are also very important factors for epitaxial electrodeposition of zinc in addition to crystal orientation, which can provide a new mechanism for future researches on zinc anode modification.

9.
Angew Chem Int Ed Engl ; 62(3): e202215306, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36416188

RESUMO

The booming of aqueous zinc-ion batteries (AZIBs) draws the researchers' attention to issues of zinc metal anodes, such as uncontrollable dendrite growth, corrosion, and volume effects. Zinc powder anode is more suitable for the industrial application of AZIBs than the widely used zinc foil anode due to its low cost, tunability and processability. However, the related solutions are rarely studied because the above issues of zinc metal anode are more serious in zinc powder anode. Herein, for the first time, we design a semi-solid zinc slurry anode consisting of zinc powder and zincophilic tin additive dispersed in a conductive elastic rheological network. Zinc can be deposited homogeneously on the dispersed tin particles, which avoids agglomerative zinc deposition and alleviates volume change during repeated zinc stripping/plating. Moreover, the practical application of the full cell with slurry is very promising since its operating life can be easily extended by facile slurry renewal.

10.
Anim Nutr ; 12: 42-53, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36381065

RESUMO

Feed efficiency is one of the most important issues for sustainable pig production. Daily-phase feeding (DPF) is a form of precision feeding that could improve feed efficiency in pigs. Gut microbiota can regulate host nutrient digestion, absorption, and metabolism. However, which key microbes may play a vital role in improving the feed efficiency during DPF remains unclear. In the present study, we used a DPF program compared to a three-phase feeding (TPF) program in growing-finishing pigs to investigate the effects of gut microbiota on feed efficiency. A total of 204 Landrace × Yorkshire pigs (75 d) were randomly assigned into 2 treatments. Each treatment was replicated 8 times with 13 to 15 pigs per replicate pen. Pigs in the TPF group were fed with a commercial feeding program that supplied fixed feed for phases I, II, and III, starting at 81, 101, and 132 d of age, respectively, and pigs in the DPF group were fed a blend of adjacent phase feed from 81 to 155 d at a gradual daily ratio and phase III feed from 155 to 180 d of age. Daily feed intake and body weight were recorded by a computerized device in the feeders. Feces and blood samples were collected from 1 pig per replicate at 155 and 180 d of age. The results showed that the DPF program remarkably improved the feed efficiency at 155 d (P < 0.001) and 180 d of age (P < 0.001), with a significant reduction of the intake of crude protein (P < 0.01), net energy (P < 0.001), crude fiber (P < 0.001), ether extract (P < 0.01), and ash (P < 0.001). The daily-phase feeding program increased the abundance of Prevotella copri (P < 0.05) and Paraprevotella clara (P < 0.05), while it decreased the abundance of Ocilibacter (P < 0.05) at 155 d of age. The results of correlation analysis indicated that the differentially abundant microbiota communities were closely associated with 20 metabolites which enriched amino acid and phenylalanine metabolism. Our results suggest that 2 key microbes may contribute to feed efficiency during daily-phase feeding strategies in pigs.

11.
Small ; 18(52): e2205667, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36373682

RESUMO

Aqueous zinc-ion batteries (AZIBs) have drawn the attention of numerous researchers owing to their high safety and cost-effectiveness. However, the dendrite growth and side reactions of the zinc (Zn) anodes limit their further practical applications. Herein, a porous amorphous silicon nitride protective layer with high zincophobicity is constructed on the Zn anode surface, which can guide the uniform stripping/plating of Zn2+ underneath the protective layer through its isotropic Zn affinity to alleviate the growth of dendrites and by-products. As a result, the amorphous silicon nitride-protected Zn anode can maintain a stable Coulombic efficiency (CE) of 98.8% and low voltage hysteresis for 710 cycles in the half cell. The full cell with the as-prepared Zn anode can deliver excellent electrochemical performances (89.0% capacity retention and 144.4 mAh g-1 discharge capacity after 1000 cycles at 4 A g-1 ). This work reveals the key role of uniform metal affinity induced by the amorphous materials in the interface modification of metal anodes, which is instructive for the design of stable metal anodes.


Assuntos
Líquidos Corporais , Zinco , Compostos de Silício , Eletrodos
12.
Research (Wash D C) ; 2022: 9841343, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072269

RESUMO

The development of zinc-ion batteries with high energy density remains a great challenge due to the uncontrollable dendrite growth on their zinc metal anodes. Film anodes plated on the substrate have attracted increasing attention to alleviate these dendrite issues. Herein, we first point out that both the random crystal orientation and the low metal affinity of the substrate are important factors of zinc dendrite formation. Accordingly, the (1 0 1) fully preferred tin interface layer with high zinc affinity was fabricated by chemical tin plating on (1 0 0) oriented copper. This tin decorated copper substrate can realize high reversible zinc plating/stripping behavior, and full cell using this zinc plated substrate can be operated for more than 1000 cycles with high capacity retention (85.3%) and low electrochemical impedance. The proposed strategy can be also applied to lithium metal batteries, which demonstrates that the substrate orientation regulation and metal affinity design are the promising approaches to achieve dendrite-free metal anode and overcome the challenges of highly reactive metal anodes.

13.
Anim Nutr ; 9: 84-99, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35949981

RESUMO

The gut microbiome has great effects on the digestion, absorption, and metabolism of lipids. However, the microbiota composition that can alter the fat deposition and the meat quality of pigs remains unclear. Here, we used Laiwu (LW) pigs (a native Chinese breed with higher intramuscular fat) compared with commercial crossbreed Duroc × (Landrace × Yorkshire) (DLY) pigs to investigate the effects of microbiota on meat quality, especially in intramuscular fat content. A total of 32 DLY piglets were randomly allotted to 4 groups and transplanted with fecal microbiota from healthy LW pigs. The results indicated that the high dose of fecal microbiota transplantation (HFMT) selectively enhanced fat deposition in longissimus dorsi (P < 0.05) but decreased backfat thickness (P < 0.05) compared with control group. HFMT significantly altered meat color and increased feed conversation ratio (P < 0.05). Furthermore, the multi-omics analysis revealed that Bacteroides uniformis, Sphaerochaeta globosa, Hydrogenoanaerobacterium saccharovorans, and Pyramidobacter piscolens are the core species which can regulate lipid deposition. A total of 140 male SPF C57BL/6j mice were randomly allotted into 7 groups and administrated with these 4 microbes alone or consortium to validate the relationships between microbiota and lipid deposition. Inoculating the bacterial consortium into mice increased intramuscular fat content (P < 0.05) compared with control mice. Increased expressions of lipogenesis-associated genes including cluster of differentiation 36 (Cd36), diacylglycerol O-acyltransferase 2 (Dgat2), and fatty acid synthase (FASN) were observed in skeletal muscle in the mice with mixed bacteria compared with control mice. Together, our results suggest that the gut microbiota may play an important role in regulating the lipid deposition in the muscle of pigs and mice.

14.
Anim Nutr ; 10: 280-293, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35785254

RESUMO

Lipid metabolism is very important for meat quality in pigs. Accumulating evidence shows that gut microbiota can contribute to this physiological process. However, the gut microbiota that function in lipid metabolism and adipogenesis remains unclear. Here, we compared the characteristics of fat deposition and gut microbial community between Laiwu pigs and Duroc × (Landrace × Yorkshire) (DLY) pigs. Fecal microbiota transplantation (FMT) was performed to determine the possible impact of gut microbiota on lipid metabolism in pigs. An integrated analysis of the gut microbiome and lipidome of the small intestine, plasma, and liver was conducted to investigate the effects of FMT on host lipid metabolism. The comparative analysis of the gut microbiome showed higher abundance of Bacteroidetes (P = 0.0018) while lower abundance of Firmicutes (P = 0.012) in Laiwu pigs, and the microbial composition can be transferred from Laiwu pigs into DLY pigs. Transmission electron microscope and Oil red-O staining were performed to analyze the effects of FMT on lipid deposition in liver, the main target organ for lipid metabolism. The results showed that FMT significantly increased the number of lipid droplets (P = 0.0035) and lipid accumulation (P = 0.0026) in liver. Furthermore, integrated multi-tissues lipidome analysis demonstrated that the fatty acyls and glycerophospholipids were significantly increased (P < 0.01) in intestine and liver, while glycerolipids and fatty acyls were reduced (P < 0.01) in plasma. In the small intestine, FMT increased (P < 0.01) the relative abundance of polyketides and prenol lipids but reduced (P < 0.01) the saccharolipids. Correlation analysis revealed the potential interactions between microbiota and lipid metabolites. Together, our results indicated that the gut microbiota may regulate the lipid metabolism and enhance the accumulation of lipid droplets in the liver of pigs.

15.
Front Nutr ; 9: 842686, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571901

RESUMO

Given the antibacterial effects of ε-polylysine acting on cell membranes, and that glycerol phospholipids are important components of the cell membrane, we hypothesized that ε-polylysine may regulate glycerophospholipid metabolism by modifying the gut microbiota. To test this hypothesis, we treated post-weaning C57 mice with different levels of ε-polylysine (0, 300, 600, and 1,200 ppm) in their basic diet. The growth performance and morphology of intestine were then determined. Modification of the gut microbiota and their function were analyzed using 16S rDNA sequencing. Metabolite identification was performed using the LC-MS method. The results showed that body weight decreased with an increasing supplemental level of ε-polylysine from 5 to 7 weeks (P < 0.05), but no significant difference was observed after 8 weeks (P > 0.05). Supplementation with 1,200 ppm ε-polylysine changed the morphology of the jejunum and ileum, increased the villus length, decreased the crypt depth of the jejunum, and decreased the villus length and crypt depth of the ileum (P < 0.05). ε-Polylysine shifted the intestine microbiota by changing alpha diversity (Chao 1, observed species, Shannon, and Simpson indices) and varied at different times. ε-polylysine decreased Firmicutes and increased Bacteroidetes at 4 week, but increased Firmicutes and decreased Bacteroidetes at 10 week. ε-Polylysine regulated genera associated with lipid metabolism such as Parabacteroides, Odoribacter, Akkermansia, Alistipes, Lachnospiraceae UCG-001, Collinsella, Ruminococcaceae, and Intestinimonas. During the adult period, the genera Alistipes, Lachnospiraceae UCG-001, and Streptomyces were positively associated with PC, PE, LysoPC, LysoPE, 1-Arachidonoylglycerophosphoinositol and OHOHA-PS (R > 0.6, P < 0.001), but changes in Blautia, Christensenellaceae R-7 group, Odoribacter, Allobaculum, Ruminococcaceae UCG-004, Ruminococcaceae UCG-005, and Lachnospiraceae UCG-010 were negatively correlated with glycerophospholipid metabolites (R < -0.6, P < 0.001). The abundance of glycerophospholipid metabolites, including PC, PE, lysoPC, and lysoPE, were decreased by ε-polylysine. Furthermore, ε-polylysine reduced the incidence of the genera including Ruminococcus, Prevotella, Prevotellaceae, Butyricimonas, and Escherichia-Shigella and reduced the abundance of Faecalibaculum, Christensenellaceae R-7 group, Coriobacteriaceae UCG-002. In conclusion, ε-polylysine modified gut microbiota composition and function while also restraining pathogenic bacteria. The glycerophospholipid metabolism pathway and associated metabolites may be regulated by intestinal bacteria.

16.
J Pain Res ; 15: 1389-1399, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35592818

RESUMO

Objective: Continuous interscalene brachial plexus block (cIBPB) is an effective perioperative analgesic therapy for shoulder arthroscopic surgery (SAS) patients. This trial aimed to compare the effect of different cIBPB infusion methods on postoperative analgesia and respiratory function in patients undergoing SAS. Methods: After SAS, 88 patients were randomly assigned to four groups. Through interscalene catheter, all the patients received an initial dose of 10 mL 0.2% ropivacaine. The CI group received 0.2% ropivacaine 4 mL/h, and the PIBI1, PIBI2, and PIBI3 groups received intermittent 0.2% ropivacaine boluses at 4 mL/h, 8 mL/2 h, and 12 mL/3 h, respectively. The patients could also use a patient-controlled analgesia (PCA) pump to self-inject a tramadol bolus each time he/she felt pain. The primary outcome was the cumulative tramadol consumption over the 48 h after surgery. Secondary outcome measures included PCA frequency, pain (visual analogue scale, VAS) score, patient satisfaction, diaphragmatic excursion, pulmonary function, and adverse events. Results: The cumulative tramadol consumption and PCA frequency over the 48 h after surgery in groups PIBI2 and PIBI3 were lower than in both the CI and PIBI1 groups (p<0.001). The VAS scores (at rest and on movement) in groups PIBI2 and PIBI3 were lower than those in the CI and PIBI1 groups at 8 and 12 h after surgery (all p<0.001). Patient satisfaction scores were significantly higher in the PIBI2 group than in the other three groups (all p<0.001). Diaphragmatic excursion was significantly decreased in the PIBI3 group compared to the other three groups (p<0.05). The incidence of adverse events over the 48 h after surgery was significantly higher in the PIBI3 group compared to the other three groups (p<0.001). Conclusion: Programmed intermittent bolus infusion with 0.2% ropivacaine 8 mL/2 h for cIBPB can achieve lower tramadol consumption, along with better analgesia after surgery, lower reduction in diaphragmatic excursion, lower incidence of adverse events, and higher patient satisfaction.

17.
J Anim Sci Biotechnol ; 12(1): 57, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33947457

RESUMO

BACKGROUND: The hyper-prolificacy Meishan gilts achieved a superior endometrial gland development (EGD) than white crossbred gilts during the ovary-independent period (before 60 d of age). Then, the EGD continues under the management of ovary-derived steroid hormones that regulated by gut microbiota (after 60 d of age). However, whether Meishan gilts' superiority in EGD lasting to the ovary-dependent period (after 60 d of age) and the role of gut microbiota in this period both remain unclear. METHODS: Meishan gilts and Landrace x Yorkshire (LxY) gilts were raised under the same housing and feeding conditions until sexual maturity and then we compared their EGD and gut microbiota. Meanwhile, we transplanted fecal microbiota from Meishan gilts to L×Y gilts to explore the role of gut microbiota in EGD. We sampled plasma every 3 weeks and collected the uterus, ovary, liver, and rectal feces after the sacrifice. We then determined the hormone concentrations and expressions of the EGD-related genes. We also profiled the gut microbiota using 16S rDNA sequencing and metabolites of plasma and liver tissue using untargeted metabolomics. Finally, the correlation analysis and significant test was conducted between FMT-shifted gut microbes and EGD-related indices. RESULTS: Meishan gilts have larger endometrial gland area (P < 0.001), longer uterine horn length (P < 0.01) but lighter uterine horn weight (P < 0.05), a distinctive gut microbiota compared with L×Y gilts. Fecal microbiota transplantation (FMT) increased endometrial gland area (P < 0.01). FMT markedly shifted the metabolite profiles of both liver and plasma, and these differential metabolites enriched in steroid hormone biosynthesis pathway. FMT increased estradiol and insulin-like growth factor 1 but decreased progesterone dynamically. FMT also increased the expression of the EGD-related genes estrogen receptor 1 gene, epithelial cadherin, and forkhead box protein A2. There is a significant correlation between FMT-shifted gut microbes and EGD-related indices. CONCLUSION: Sexually matured Meishan gilts achieved a superior EGD than LxY gilts. Meanwhile, gut microbiota contribute to the EGD potentially via regulating of steroid hormones during the ovary-dependent period.

18.
Chem Asian J ; 16(1): 3-19, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33150730

RESUMO

Titanium dioxide (TiO2 ) is a promising anode material for sodium-ion batteries (SIBs) due to its low cost, natural abundance, nontoxicity, and excellent electrochemical stability. Oxygen vacancies, the most common point defects in TiO2 , can dramatically influence the physical and chemical properties of TiO2 , including band structure, crystal structure and adsorption properties. Recent studies have demonstrated that oxygen-deficient TiO2 can significantly enhance sodium storage performance. Considering the importance of oxygen vacancies in modifying the properties of TiO2 , the structural properties, common synthesis strategies, characterization techniques, as well as the contribution of oxygen-deficient TiO2 on initial Coulombic efficiency, cyclic stability, rate performance for sodium storage are comprehensively described in this review. Finally, some perspectives on the challenge and future opportunities for the development of oxygen-deficient TiO2 are proposed.

19.
Front Microbiol ; 11: 544097, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33312165

RESUMO

Intestinal microbiota plays an important role in the health of animals. However, little is known about the gut microbiota in Ningxiang pigs. Thus, we investigated how dietary supplementation with different ε-polylysine concentrations (0, 20, 40, 80, and 160 ppm) affected the ileal microbiota in Ningxiang pigs using a replicated 5 × 5 Latin square method. Each experimental period included 10 days for diet adaptation, 3 days for feces collection and 2 days for digesta collection. The ileal contents were collected and used for sequencing of the V3-V4 hypervariable region of the 16S rRNA gene. The results revealed that ε-polylysine significantly decreased the digestibility of crude protein and crude fiber, as well as the utilization of metabolizable energy (P < 0.05). The relative abundances of 19 bacterial genera significantly increased, while those of 26 genera significantly decreased (P < 0.05). In addition, ε-polylysine increased the abundance of some bacteria (e.g., Faecalibacterium, Bifidobacterium, and lactic acid bacteria) and inhibited some other bacteria (e.g., Micrococcaceae, Acinetobacter, Anaerococcus, Peptoniphilus, Dehalobacterium, Finegoldia, Treponema, and Brevundimonas). Furthermore, based on the 16S rRNA gene data and data from the precalculated GreenGenes database, bacterial communities in the ileal contents exhibited enhanced functional maturation, including changes in the metabolism of carbohydrates, amino acids (e.g., alanine, lysine, tryptophan, cysteine, and methionine), cofactors, and vitamins (e.g., biotin, thiamine, and folate), as well as in the activity of the insulin signaling pathway. This study suggests that ε-polylysine may influence the utilization of feed nutrients by Ningxiang pigs, including proteins, lipids, metabolizable energy, and fiber, by regulating the gut microbiota.

20.
J Anim Sci Biotechnol ; 10: 95, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31827788

RESUMO

BACKGROUND: Early-weaning of piglets is often accompanied by severe disorders, especially diarrhea. The gut microbiota and its metabolites play a critical role in the maintenance of the physiologic and metabolic homeostasis of the host. Our previous studies have demonstrated that oral administration of Lactobacillus frumenti improves epithelial barrier functions and confers diarrhea resistance in early-weaned piglets. However, the metabolic response to L. frumenti administration remains unclear. Then, we conducted simultaneous serum and hepatic metabolomic analyses in early-weaned piglets administered by L. frumenti or phosphate-buffered saline (PBS). RESULTS: A total of 100 6-day-old crossbred piglets (Landrace × Yorkshire) were randomly divided into two groups and piglets received PBS (sterile, 2 mL) or L. frumenti (suspension in PBS, 108 CFU/mL, 2 mL) by oral administration once per day from 6 to 20 days of age. Piglets were weaned at 21 days of age. Serum and liver samples for metabolomic analyses were collected at 26 days of age. Principal components analysis (PCA) showed that L. frumenti altered metabolism in serum and liver. Numerous correlations (P < 0.05) were identified among the serum and liver metabolites that were affected by L. frumenti. Concentrations of guanosine monophosphate (GMP), inosine monophosphate (IMP), and uric acid were higher in serum of L. frumenti administration piglets. Pathway analysis indicated that L. frumenti regulated fatty acid and amino acid metabolism in serum and liver. Concentrations of fatty acid ß-oxidation related metabolites in serum (such as 3-hydroxybutyrylcarnitine, C4-OH) and liver (such as acetylcarnitine) were increased after L. frumenti administration. CONCLUSIONS: Our findings suggest that L. frumenti regulates lipid metabolism and amino acid metabolism in the liver of early-weaned piglets, where it promotes fatty acid ß-oxidation and energy production. High serum concentrations of nucleotide intermediates, which may be an alternative strategy to reduce the incidence of diarrhea in early-weaned piglets, were further detected. These findings broaden our understanding of the relationships between the gut microbiota and nutrient metabolism in the early-weaned piglets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...